713 research outputs found

    Photon subtracted states and enhancement of nonlocality in the presence of noise

    Full text link
    We address nonlocality of continuous variable systems in the presence of dissipation and noise. Three nonlocality tests have been considered, based on the measurement of displaced-parity, field-quadrature and pseudospin-operator, respectively. Nonlocality of twin beam has been investigated, as well as that of its non-Gaussian counterparts obtained by inconclusive subtraction of photons. Our results indicate that: i) nonlocality of twin beam is degraded but not destroyed by noise; ii) photon subtraction enhances nonlocality in the presence of noise, especially in the low-energy regime.Comment: 12 pages, 7 figure

    Squeezed Fock state by inconclusive photon subtraction

    Full text link
    We analyze in details the properties of the conditional state recently obtained by J. Wenger, et al. [Phys. Rev. Lett. {\bf 92}, 153601 (2004)] by means of inconclusive photon subtraction (IPS) on a squeezed vacuum state S(r)∣0⟩S(r)\ket{0}. The IPS process can be characterized by two parameters: the IPS transmissivity τ\tau and the photodetection quantum efficiency η\eta. We found that the conditional state approaches the squeezed Fock state S(r)∣1⟩S(r)\ket{1} when τ,η→1\tau,\eta \to 1, i.e., in the limit of single-photon subtraction. For non-unit IPS transmissivity and efficiency, the conditioned state remains close to the target state, {\em i.e.} shows a high fidelity for a wide range of experimental parameters. The nonclassicality of the conditional state is also investigated and a nonclassicality threshold on the IPS parameters is derived.Comment: 10 pages, 7 figure

    Selective cloning of Gaussian states by linear optics

    Full text link
    We investigate the performances of a selective cloning machine based on linear optical elements and Gaussian measurements, which allows to clone at will one of the two incoming input states. This machine is a complete generalization of a 1 to 2 cloning scheme demonstrated by U. L. Andersen et al. [Phys. Rev. Lett. vol. 94, 240503 (2005)]. The input-output fidelity is studied for generic Gaussian input state and the effect of non-unit quantum efficiency is also taken into account. We show that if the states to be cloned are squeezed states with known squeezing parameter, then the fidelity can be enhanced using a third suitable squeezed state during the final stage of the cloning process. A binary communication protocol based on the selective cloning machne is also discussed.Comment: 6 pages, 6 figure

    Entanglement frustration in multimode Gaussian states

    Full text link
    Bipartite entanglement between two parties of a composite quantum system can be quantified in terms of the purity of one party and there always exists a pure state of the total system that maximizes it (and minimizes purity). When many different bipartitions are considered, the requirement that purity be minimal for all bipartitions gives rise to the phenomenon of entanglement frustration. This feature, observed in quantum systems with both discrete and continuous variables, can be studied by means of a suitable cost function whose minimizers are the maximally multipartite-entangled states (MMES). In this paper we extend the analysis of multipartite entanglement frustration of Gaussian states in multimode bosonic systems. We derive bounds on the frustration, under the constraint of finite mean energy, in the low and high energy limit.Comment: 4 pages, 2 figures. Contribution to "Folding and Unfolding: Interactions from Geometry. Workshop in honour of Giuseppe Marmo's 65th birthday", 8-12 June 2011, Ischia (NA) Ital

    Effect of noise and enhancement of nonlocality in on/off photodetection

    Full text link
    Nonlocality of two-mode states of light is addressed by means of CHSH inequality based on displaced on/off photodetection. Effects due to non-unit quantum efficiency and nonzero dark counts are taken into account. Nonlocality of both balanced and unbalanced superpositions of few photon-number states, as well as that of multiphoton twin beams, is investigated. We find that unbalanced superpositions show larger nonlocality than balanced one when noise affects the photodetection process. De-Gaussification by means of (inconclusive) photon subtraction is shown to enhance nonlocality of twin beams in the low energy regime. We also show that when the measurement is described by a POVM, rather than a set of projectors, the maximum achievable value of the Bell parameter in the CHSH inequality is decreased, and is no longer given by the Cirel'son bound.Comment: 21 Figure

    Equilibrium and Kinetic Aspects in the Sensitization of Monolayer Transparent TiO2 Thin Films with Porphyrin Dyes for DSSC Applications

    Get PDF
    Free base, Cu(II) and Zn(II) complexes of the 2,7,12,17-tetrapropionic acid of 3,8,13,18-tetramethyl-21H,23H porphyrin (CPI) in solution and bounded to transparent monolayer TiO2nanoparticle films were studied to determine their adsorption on TiO2surface, to measure the adsorption kinetics and isotherms, and to use the results obtained to optimize the preparation of DSSC photovoltaic cells. Adsorption studies were carried out on monolayer transparent TiO2films of a known thickness. Langmuir and Frendlich adsorption constants of CPI-dyes on TiO2monolayer surface have been calculated as a function of the equilibrium concentrations in the solutions. The amount of these adsorbed dyes showed the accordance with Langmuir isotherm. Kinetic data on the adsorption of dyes showed significantly better fits to pseudo-first-order model and the evaluated rate constants linearly increased with the grow of initial dye concentrations. The stoichiometry of the adsorption of CPI-dyes into TiO2and the influence of presence of coadsorbent (chenodeoxycholic acid) have been established. The DSSC obtained in the similar conditions showed that the best efficiency can be obtained in the absence of coadsorbent with short and established immersion times

    FOCUS: Object-Centric World Models for Robotics Manipulation

    Full text link
    Understanding the world in terms of objects and the possible interplays with them is an important cognition ability, especially in robotics manipulation, where many tasks require robot-object interactions. However, learning such a structured world model, which specifically captures entities and relationships, remains a challenging and underexplored problem. To address this, we propose FOCUS, a model-based agent that learns an object-centric world model. Thanks to a novel exploration bonus that stems from the object-centric representation, FOCUS can be deployed on robotics manipulation tasks to explore object interactions more easily. Evaluating our approach on manipulation tasks across different settings, we show that object-centric world models allow the agent to solve tasks more efficiently and enable consistent exploration of robot-object interactions. Using a Franka Emika robot arm, we also showcase how FOCUS could be adopted in real-world settings

    Oxygen transfer in a gas-liquid system : kinetic influence of water salinity

    Get PDF
    Oxygen gas is widely used as oxidant in a variety of industrial processes, such as hydrometallurgy, biochemical industry, organic syntheses, and wastewater treatment [1]. However, the gas–liquid mass transfer of oxygen usually becomes a bottleneck of the whole process due to its sparing solubility in aqueous solutions. It is therefore a research subject to enhance oxygen mass transfer. This study is dedicated to an accurate evaluation of thermodynamic and kinetics aspects in the water oxygenation process. Oxygenation can be analyzed by means of kinetic study of oxygen dissolution from the oxygen mass transfer coefficient (KLa) and oxygen transfer rate (SOTR) [2]. A stirred, submerged aerated 4-liters system have been designed and the operational conditions has been optimized by studying the influence of hydraulic head, air flow and salinity of water using an optical oxygen sensor. Concerning the thermodynamic phase equilibria, experimental and modelling results are obtained from different binary systems (water/air) and ternary systems (water/air/salts). This information is necessary to predict the composition of the gas phase during the process and it is also important for an implementation in a process simulation. The oxygen mass transfer coefficients were firstly measured, monitoring in the time the oxygen concentration in various synthetic liquid phases containing either salts (NaCl, KCl, LiCl and MgCl). When compared to clean water, noticeable increase of KLa were observed; the variation of KLa and SOTR with the solution salinity was modelled and found dependent on the nature of cation in the salt added. For all cases, an increase of KLa with salinity increasing was observed. The present study clearly confirmed the importance to define the experimental conditions before to describe and to model appropriately the gas–liquid mass transfer phenomena
    • …
    corecore